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RADIATIVE INTERACTIONS IN LAMINAR DUCT FLOWS

P. A. TRIVEDI* and S. N. Tiwarit
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ABSTRACT

Analyses and numerical procedures are presented for infrared

radiative energy transfer in gases when other modes of energy

transfer occur simultaneously. Two types of geometries are

considered, a Parallel Plate Duct and a Circular Duct. Fully

developed laminar incompressible flows of absorbing-emitting

species in black surfaced ducts

conditions of uniform wall heat flux.

considered are OH, CO, CO2, and H20.

are considered under the

The participating species

Nongray as well as gray

formulations are developed for both geometries. Appropriate

limiting solutions of the governing equations are obtained and

conduction-radiation interaction parameters are evaluated. Tien

and Lowder's wide band model correlation has been used in

nongray formulation. Numerical procedures are presented to

solve the integro-differential equations for both geometries. The

range of physical variables considered are Temperature 300 K-

2000 K, Pressure 0.1 atm- 100.0 atm, and Spacing between

Plates/Radius of the Tube 0.1 era- 100 cm. An extensive

parametric study based on nongray formulation is presented.

Results obtained for different flow conditions indicate that the

radiative interactions can be quite significant in fully developed

incompressible flows.
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physical coordinate for circular duct
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temperature, K

wall temperature K; T1 = Tw

bulk temperature, K

nondimensional coordinate = SPy/Ao

nondimensional path length = SPL/Ao

physical coordinates

nondimensional temperature

nondimensional bulk temperature

spectral absorption coefficient, cm q

Planck mean absorption coefficient, cm q

computational coordinates
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Chapter 1

INTRODUCTION

There is renewed interest in investigating various aspects of radiative energy transfer

in participating mediums. Radiative interactions become important in many engineering

problems involving high temperature gases. Recent interest lies in the areas of design

of high pressure combustion chambers and high enthalpy nozzles, entry and reentry

phenomena, hypersonic propulsion, and defence oriented research.

Basic formulations on radiative energy transfer in participating mediums are available

in standard references [1-8]. The review articles presented in [9-24] are useful in

understanding the radiative properties of participating species and the nature of nongray

radiation. The validity of radiative transfer analyses depends upon the accuracy with

which absorption-emission and scattering characteristics of molecular species are modeled

and these are reviewed in [12,13].

For gray participating mediums between parallel plates and in a cylinder, the exact

formulations are available in the literature for different physical conditions. Ussikin and

sparrow [25] studied thermal radiation between parallel plates separated by an absorbing-

emitting, nonisothermal gray gas. Sparrow, Ussikin, and Hubbard [26] investigated

radiative transfer in a nonisothermal gray spherical medium. Viskanta [27] studied

the interaction of conduction, laminar convection, and radiation in a plane layer of a

radiating fluid. Cess and Tiwari [28] investigated heat transfer to laminar flow of an

absorbing-emitting gas between parallel plates. Tiwari [29] studied radiative interaction

in transient energy transfer in gaseous systems. Tiwari and Singh [30] extended Tiwari's

work [29] for fully developed laminar flows. The studies presented in [27-29] have
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reviewedotheravailableliteratureongrayaswell asnongrayradiativetransferbetween

planargeometries.

Einstein [31] consideredradiantenergytransferin an absorbing-emittinggraygas

flowing within a black walled cylindrical pipe. Nichols [32] studiedthe influenceof

theabsorptionof radiationon thetemperatureprofile andheattransferto an absorbing

medium flowing turbulently in an annulus, deSotoand Edwards[33] predictedthe

radiativeinterchangebetweena blacktubeanda nonisothermalnongraygaswithin the

tube.deSoto[34] investigatedthecouplingof radiationwith convectionandconduction

in a nonisothermalnongraygasflowing in the entranceregionof a black walled tube.

PearceandEmery[35] treatedthethermalentryregionfor laminarflowof a graygasor a

gaswith graybands.Kesten[36] presentedtheequationfor thespectralradiantheatflux

distributionin anabsorbing-emittinggascontainedin a longcylinder. Landram,Greif,

andHabib[37] studiedheattransferin turbulentpipeflowswith optically thin radiation.

HabibandGreif [38] investigatednongrayradiativetransportin a cylindrical medium.

Tiwari and Cess[39] studiedheattransferto laminarflow of nongraygasesthrougha

circular tube. Wasseland Edwards[40] investigatedmoleculargasbandradiationin

cylindersfor the axialbandabsorptance,meanbeamlength,absorptivityandemissivity

for a nongraygas.

As mentionedearlier,in caseof combustionchambersandindustrialfurnaces,heat

transfertakesplaceby simultaneousconvectionandradiation.Also, in some postulated

nuclear reactor loss-of-coolant accident scenarios, it is important to predict heat transfer

from heated walls to flowing water vapor, which is capable of absorbing and emitting

thermal radiation. The main emphasis of this study is to present basic formulations and

solution procedure, to calculate the radiative interaction in an absorbing-emitting medium

in a laminar flow through parallel plates and a circular duct while other modes of heat

transfer occur simultaneously. To accomplish this it is essential to review different band

absorption models available in the literature and incorporate the most suitable model
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in the governingequations.For certainapplications,it is desirableto provide limiting

forms of the basicgoverningequationsand,if possible,obtainclosedform solutions.

Thesesolutionsarevery useful in estimatingthe extentof radiativeinteractionfor a

given physicalproblem.

A reviewof differentabsorptionmodelsispresentedinChap.2. Thegeneralproblem

of radiativeinteractionis formulatedfor flow betweenblackparallelplatesin Chap.3 for

bothgrayandnongraymediums.A similarformulationis presentedfor theflow through

a black circularduct in Chap. 4. The numericalprocedurefor bothcasesis presented

in Chap.5. Typicalresultsfor bothgeometriesarepresentedanddiscussedin Chap.6.

Finally, theresultsandconclusionsreachedfrom this studyaresummarizedin Chap.7.



Chapter 2

BAND ABSORPTION AND CORRELATIONS

The study of radiative transmission in nonhomogeneous gaseous systems requires a

detailed knowledge of the absorption, emission, and scattering characteristics of the spe-

cific species under investigation. In absorbing and emitting mediums, an accurate model

for the spectral absorption coefficient is of vital importance in the correct formulation of

the radiative flux equations. A systematic representation of the absorption by a gas, in

the infrared part of spectrum, requires the identification of the major infrared bands and

the evaluation of the line parameters (line intensity, line half-width, and spacing between

the lines) of these bands. The line parameters depend upon the temperature, pressure

and concentration of the absorbing molecules and, in general, these quantities vary con-

tinuously along a nonhomogeneous path in the medium. In recent years, considerable

efforts have been expended in obtaining the line parameters and absorption coefficients

of important atomic and molecular species.

For an accurate evaluation of the transmittance (or absorptance) of a molecular band,

a convenient line model is used to represent the variation of the spectral absorption

coefficient. The line models usually employed are Lorentz, Doppler, and Voight line

profiles. A complete formulation (and comparison) of the transmittance and absorption

by these line profiles is given in [9-13]. In a particular band consisting of many lines,

the absorption coefficient varies very rapidly with frequency. Thus, it becomes very

difficult and time-consuming task to evaluate the total band absorption over the actual

band contour by employing an appropriate line profile model. Consequently, several

approximate band models (narrow as well as wide) have been proposed which represent

absorption from an actual band with reasonable accuracy [6-13] and [14-24]. Several

4
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continuouscorrelationsfor thetotalbandabsorptionareavailablein literature[9-13] and

[19-23]. Thesehavebeenemployedin manynongrayradiativetransferanalyseswith

varyingdegreeof success[9-13] and[14-23]. A brief discussionis presentedhereon

the total bandabsorption,bandmodels,and bandabsorptancecorrelations.

Theabsorptionwithin anarrowspectralintervalof avibrationrotationbandcanquite

accuratelybe representedby the so-called"narrow bandmodels."For a homogeneous

path, the total absorptanceof a narrowbandis given by

AN = f [1 -exp(-kwX)]dw (2.1)
t,i

Aw

where k_ is the volumetric absorption coefficient, w is the wave number, and X = py

is the pressure path length. The limits of integration in Eq.(2.1.1) are over the narrow

band pass considered. The total band absorption of the so-called "wide band models"

is given by

A = / [1-exp(-k,_X)]d(_-_Oo) (2.2)

--OO

where the limits of integration are over the entire band pass and wo is the wave number at

the center of the wide band. In actual radiative transfer analyses, the quantity of frequent

interest is the derivative of Eqs.(2.1.1) and (2.1.2).

Four commonly used narrow hand models are Elsasser, Statistical, Random Elsasser,

and Quasi-Random. The application of a model to a particular case depends upon the

nature of absorbing-emitting molecule. Complete discussions on narrow band models,

and expressions for transmittance and integrated absorptance are available in the literature

[%13] and [14-16]. Detailed discussions on the wide band models are given in [9-13]

and [17-23]. The relations for total absorptance of a wide band are obtained from

the absorptance formulations of narrow band models by employing the relations for the

variation of line intensity as [9-13] and [20-23]

--dSJ= (_o) exp{ bo [_ - too[_.,4o_J (2.3)



whereSj is the intensity of the jth spectral line, d is the line spacing, S is the integrated

intensity of a wide band, Ao is the band width parameter, and bo = 2 for a symmetrical

band and bo = 1 for bands with upper and lower wave number heads at Wo. The total

absorptance of an exponential wide band, in turn, may be expressed by

A(u,/3) 1 fA(u,/3) =_ Ao - Ao [AN(u,/3)]d(w-Wo) (2.4)
wide band

sx is the nondimensional path length,/3 = L_ is the line structure param-where u = Ao

eter, 7L is the Lorentz line half-width, and ,z_N (u, fl) represents the mean absorptance

of a narrow band.

By employing the Elsasser narrow band absorptance relation and Eq.(2.1.3) the

expression for the exponential wide band absorptance is obtained as [12]

0

,,sinhy 0.5772156 is the Euler's constant, and EI(¢) is thewhere 4' = (cosh B-cos z)' 7 =

exponential integral of the first order. Analytic solution of Eq.(2.1.5) can be obtained

in a series form as [12,13]

OO

n=l

AnSUM (ran)

n(B + 1)" n! (n- 1)!
(2.6)

where

OO

(n + m - 1)! (2m - 1)!C mSUM (mrs)
m=0/-" 2" (m!) _

1
A = -utanh/3, B =

cosh fl
2 2B

(1 + coshfl) (B+I)
(2.7)

The series in Eq.(2.1.6) converges rapidly. When the weak line approximation for the

Elsasser model is valid (i.e. /3 is large), then Eq.(2.1.5) reduces to

A(u) = 7 + ln(u) + E1 (u) (2.8)
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In thelinear limit, Eqs.(2.1.5)and(2.1.6)reduceto ,4. = u, and in the logarithmic limit

they reduce to ,4. = 7 + In(u). It can be shown that Eq.(2.1.5) reduces to the correct

limiting form in square-root limit. Results of Eqs.(2.1.5) and (2.1.6) are found to be

identical for all pressures and pathlengths. For p > 1 atm., results of Eqs.(2.1.5)-(2.1.7)

are in good agreement for all pathlengths.

By employing the uniform statistical, general statistical, and random Elsasser narrow

band models absorptance relations and Eq.(2.1.3), three additional expressions for the

exponential wide band absorptance were obtained in [12,13]. The absorptance results of

the four wide band models are discussed in detail in [13]. The expression obtained by

employing the uniform statistical model also reduces to the relation given by Eq.(2.1.7)

for large ft.

Several continuous correlations for the total absorptance of a wide band, which are

valid over different values of path length and line structure parameter, are available in

literature. These are discussed, in detail, in [9-13] and [20--23] and are presented here in

the sequence that they became available in the literature. Most of these correlations are

developed to satisfy at least some of the limiting conditions (nonoverlapping line, linear,

weak line, and strong line approximations and square-root, large pressure, and large path

length limits) for the total band absorptance [10-13]. Some of the correlations even have

experimental justification [9-18].

The first correlation for the exponential wide band absorptance (a three piece cor-

relation) was proposed by Edwards et al. [17,18]. The first continuous correlation was

proposed by Tlen and Lowder [9], and this is of the form

._(u,fl)=ln uf(t)(u+2f(t)) +1 (2.9)

where

/3
f (t)= 2.9411- exp (-2.60t)] , t= -_
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This correlation does not reduce to the correct limiting form in the square-root limit

[10,13], and its use should be made for/3 _> 0.1. Another continuous correlation was

proposed by Goody and Belton [22], and in terms of the present nomenclature, this is

given by

F

[ V/4 + (_-_)

, fl = 2t (2.11)

Use of this correlation is restricted to relatively small/3 values [10-13]. Tien and Ling

[23] have proposed a simple two parameter correlation for fi_ (u,/3) as

ft. (u) = sinh -1 (u) (2.12)

which is valid only for the limit of large/3. A relatively simple continuous correlation

was introduced by Cess and Tiwari [12,13], and this is of the form

fi,(u,3) = 21n
I U

1 + 2+ _/u (1 +_)

where/3 = 4t =
7r 71"

(2.13)

By slightly modifying Eq.(2.1.13), another form of the wide band

absorptance is obtained as [29]

A (u, fl)= 21n

where

1 + u
(2.14)

0.1, /3__ l and all u values

c = 0.1, /3> landu <1

0.25,/3 > 1 and u > 1.

Equations.(2.1.11) and (2.1.14) reduce to all the limiting forms [10]. Based on the

formulations of slab band absorptance, Edwards and Balakrishnan [20] have proposed

the correlation

1
A(u) = ln(u) + E1 (u) -4-3' q- X -- E3(u) (2.16)
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which is valid for large /3. For present application, this correlation should be modified

by using the technique discussed in [12,13]. Based upon the formulation of the total

band absorptance from the general statistical model, Felske and Tien [21] have proposed

a continuous correlation for A. (u, fl) as

._ (u, fl)= 2E1 (tpu)-q- E1 (_) - E1 [(_)(1 q- 2t)]

+ In [(1 + 2t)] + 27 (2.17)

where

The absorptance relation given by Eq.(2.1.17) is another simple correlation which is valid

for all path lengths and for t = (/3/2) > 1. The relation of Eq.(2.l.16) can be treated as

another correlation applicable to gases whose spectral behavior can be described by the

Elsasser model. In ref. 13, Tiwari has shown that Elsasser as well as random model

formulations for the total band absorptance reduce to Ext.(2.1.17) for t _> 1.

Band absorptance results of various correlations are compared and discussed in some

detail in [12,13] and [24]. It was found that results of these correlations could be in error

by as much as 40 % when compared with the exact solutions based on different models.

Felske and Tien's correlation was found to give the least error when compared with the

exact solution based on Elsasser model. The results of Cess and Tiwari's correlations

followed the trend of general statistical model. Tiwari and Batki's correlation [Eq.(21.16)

or (2.1.17)] was found to provide a uniformly better approximation for the total band

absorptance at relatively high pressures. The sole motivation in presenting the various

correlations here is to see if their use in actual radiative processes made any significant

difference in the final results.

In Ref. 24, use of several continuous correlations for total band absorptance was

made to two problems to investigate their influence on the final results of actual radiative

processes. For the case of radiative transfer in a gas with internal heat source, it
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was found that actual center-linetemperatureresultsobtainedby using the different

correlationsfollow the samegeneraltrendas theresultsof total bandabsorptanceby

thesecorrelations. From theseresults,it may be concludedthat useof the Tien and

Lowder's correlationshouldbe avoidedat lower pressures,but its use is justified (at

moderateandhigh pressures)to gaseswhosespectralbehaviorcanbedescribedby the

regularElsasserbandmodel. For all pressuresand path lengthconditions,useof the

CessandTiwari's correlationscouldbemadeto gaseswith bandsof highlyoverlapping

lines. In a more realisticprobleminvolving flow of absorbingemitting gas,resultsof

different correlations(exceptthe TienandLowder'scorrelation)differ from eachother

by lessthan6%for all pressuresandpathlengths.Useof TienandLowder'scorrelations

is justifiedfor gaseslike CO atmoderateandhighpressures.For gaseslike CO2,useof

anyothercorrelationis recommended.While FelskeandTien'scorrelationis usefulfor

all pressuresandpathlengthsto gaseshavingrandombandstructure,Tiwari andBatld's

simplecorrelationcould be employedto gaseswith regularor randombandstructure

but for p > 1.0 atm.



Chapter 3

LAMINAR FLOW BETWEEN PARALLEL PLATES

This chapter covers the development of different types of formulation for steady

laminar flow of absorbing-emitting, constant property, incompressible gas through two

parallel black plates. Basic formulation for such a flow is given in Sec. 3.1. Gray gas

formulation is developed with limiting cases in Sec. 3.2 and Nongray formulation is

given in Sec. 3.3.

3.1 Basic Formulation

The physical model for the parallel plate geometry is shown in (Fig. 3.1.1).

For radiation participating medium, the equations expressing conservation of mass and

momentum remain unaltered, while the conservation of energy for such a flow is given

as[l]

DT _ div(kVT) + DP
pCp Dt /3T--_ + #_ - divqR (3.1)

where p is the dynamic viscosity, fl is the coefficient of thermal expansion of the fluid

and ,I_ is the Rayleigh dissipation function.

The Condition of uniform surface heat flux for each plate is assumed such that the

temperature Of the plates varies in the axial direction. Fully developed heat transfer is

considered and axial conduction and radiation is assumed to be negligible as compared

with the normal components. In other words, this represents physical conditions of a

large value of Peclet number[l]. Consequently Eq.(3.1.1) can be expressed as

pC, u.-_z + v-_y = k-_y 2 + /3Tu-_x + # -_y - div qn (3.2)

11
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If in addition,it is assumedthat theEckertnumberof theflow is small,thenEq.(3.1.2)

simplifies to

OT OT 02T 10qR

u-_-z + v--_-y = a (3.3)Ov2 pep Ov

where a = (k / pC.p) represents the thermal diffusivity of the fluid.

For a steady fully developed flow, v = 0 and u is given by the parabolic velocity

profile as

u = 6urn(¢- ¢2) ; (= Y (3.4)
l

where Um represents the mean velocity. Also for the flow of a perfect gas with uniform

wall heat flux, OT is constant and is given by

OT 2aqw

O-'-x = _,mL/k (3.5)

Now, by combining Eqs.(3.1.3-3.1.5), the energy equation is expressed as

OCT

Oy 2

12qw 10qn
i/k (_-U) - k Ov (3.6)

Upon defining nondimensional temperature as

0 - (T - 7"1) (3.7)
(qwL/k)

the energy equation, Eq.(3.1.6), is expressed as

020 10qR
12 (( - _2) _ (3.8)

O( 2 qw O(

The boundary conditions for this problem can be expressed as

Atthesurface; 0(0) =0(1) = 0

1 dO

At _ = _ ; -_ = O( = O and qR = O

___
(=0 d-_ (=1

(3.9a)

(3.9b)

(3.9c)



It should be noted that all the boundaryconditionsgiven in Eqs.

independentandany two conditionscanbeusedto obtainsolutions.
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(3.1.9) are not

Equation. (3.1.8)canbeintegratedonceandusingtheboundarycondition,onecan

obtainanotherform of theenergyequationas

0¢ - 2(3_ 2 - 2_ 3) + 1 - qR(_) (3.10)
qw

For flow problems, the quantity of primary interest is the bulk temperature of the

gas, which may be expressed as [11]

1

0b - (rb - 7'1) fqwL/k - 6 0(() (( - (2) d_ (3.11)
0

The heat transfer qw is given by the expression, qw = hc (7"1 -Tb), where hc is

the effective heat transfer coefficient (W/cm2--K). In general, the heat transfer results

are expressed in terms of the Nusselt number, Nu = hcDh/k. Here, Dh represents the

hydraulic diameter, and for the parallel plate geometry it equals twice the plate separation,

i.e., Dh = 2L. Upon eliminating the heat transfer coefficient hc from expression for qw

and Nu, a relation between the Nusselt number and the bulk temperature is obtained as

Nu - 2Lqw 2
k (7'1 - Tb) = -- 0_ (3.12)

The heat transfer results, therefore, can be expressed either in terms of Nu or 0b. In

order to accomplish this, a proper formulation for the radiative flux appearing in Eqs.

(3.1.8) and (3.1.10) must be provided.

As discussed in Chap. 2, the expression for the radiative flux is formulated in

terms of the absorption coefficient, which in turn is a strong function of frequency.

Probably the greatest simplification in formulating the radiative flux model is the gray

medium approximation. This is discussed in the following section. The gray medium

approximation also serves as an initial step toward nongray analyses.
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3.2 Gray Gas Formulation

In graygasformulation(gray-mediumapproximation),theabsorptionandthe scat-

tering coefficientsareassumedto be independentof the wavelength.For a gray non-

scatteringmediumwith black boundingsurfacestheequationfor radiationflux canbe

given as [1]

qR = 2aT4E3(r)- 2aT24E3(t- r)
r ro

2t- 20" / r4(t)S2(7--t) dt - 2o"/r4(t)S2(t - 7")dt

0 r

(3.13)

where
y L 1

0 0 0

In the preceding equations, En(t) are the exponential integral functions, and r and ro

represent the optical coordinate and optical path, respectively. For exponential kernal

approximation,

3 3 1 -_t
E2(t) -_ _e -_t', E3(t)"- _e (3.14)

Consequently, Eq. (3.2.13) is written as

qR= -
r 7"o

(t)e_ dt - gae. Tt(t)e-_tdt
0 r

(3.15)

Upon differentiating Eq.

following expression is obtained

d2 q R 9 dT 4
dr2 4 qR = 3cr--_-r

For linerized radiation Eq.(3.16) becomes

d2 q n 9 3 dT
dr 2 _qR = 12aTw"_r

(3.15) twice, the integrals can be eliminated and the

(3.16)

(3.17)
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By definingdimensionlessquantities

T-T_
0-

qwL/k
y 7-

_-n-_-o

; 7-0 = _pL

(3.18)

where _p is the Planck mean absorption coefficient, Eq. (3.17) can now be written as

3 2

d2qR 9 2 I do
de 2 4roqR = _ J q-_ (3.19)

In obtaining Eq.(3.19), it has been assumed that the absorption coefficient (not the Planck

mean absorption coefficient) is not a function of temperature. This is consistent with the

assumption of constant fluid properties in the medium. The boundary conditions for

Eq.(3.19) are found to be

qR(2) = 0

3 1 (dqR'_
_qR(O) = _ \ d_ ]_=o

(3.20)

Using the dimensionless quantities defined by Eq. (3.18) the energy equation given

1 dqR

q d_

by Eq. (3.8) is expressed as

d28

19.(_ - _) _ d_2

For this case, the boundary conditions become

(3.21)

0 (0) = 0 ; _-_ = 0 (3.22)

Equations (3.19) and (3.21) can now be solved simultaneously and the following

result is obtained for the bulk temperature

= c, + M 3 + (l_x?- 12M1- 24)e_M, ]1

1271 173,1 17
+

5M1' 70M? 70

(3.23)



where
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M1 =9 2
_ro + 71

9 3 2

71 = k_p

[ 48-3r°M2+36r° ]71 37"0 +el - ._af 8 (1 --e--'M'_)_2_71(1 e-M,)
(3.24)

The bulk temperature can be easily calculated from Eq.(3.23) for any gas once the

Planck's mean absorption coefficient Xp is known.

Two limiting solutions can also be found for large and small optical thicknesses.

These are called optically thin limit and optically thick limit solutions.

3.2.1 Optically Thin Limit

The solution in the optically thin limit is obtained by making use of the parameter

M1 defined in Eq. (3.24) as

M? = 9ro2 + "[1 (3.25)

In the optically thin limit ro --> 0 and, therefore,

lira (M12)->'71 , lim (M1)=_ (3.26)
7"o-->0 7"0-->0

Consequently,

24
lim (CI)= z

,o->0 "r_(1+ _-_)
The expression for the bulk temperature in thin limit, therefore, is obtained as,

(3.27)

(Ob)th,, = , 24 [24_12v/.._+(7__12V__24) e_V_]_ -
_ (1+ ,-_)

, }(o_),,,,_.= .--__- 1+_----_,1- 288+24-y,- 2.4-_,_

12

571

(3.28)



3.2.2 Optically Thick Limit
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In the optically thick limit %- > oc. From the definitions of 3' 1 and M1 given

in Eq. (3.24), it is obvious therefore ro >> 1, M1 >> 1. Equation (3.23), therefore,

reduces to

17 17 / 4
i-

(0b),h_ck= -7--6+ _ [N (3+ _r)
and rearranging the terms, a simpler form is obtained as

17 [ 1(0b),h_ck= -7_ 1 + (_)
where,

(3.29)

(3.30)

3.3 Nongray Formulation

In this section, formulation of the problem under realistic conditions is tried. Under

realistic conditions the gas is not gray, that is the band parameters are functions of

wavelength. Now, for solving Eq.(3.1.10), first we need to get equation for radiative

flux. The radiative transfer equations are formulated for one-dimensional planar systems.

For diffuse boundaries and in the absence of scattering, the expression for the radiative

flux is given as [1]

where

qRx (r_) = 2Bb_E3 (r_) - 2B2)_E3 (roa - r,_)

+ 2 _ba(t) E2 (rA - t) dt - _ba(t) E2 (t - _-a)dt

T,,k

y L

r_=fka@ ; %A=fkAdy
0 0

I

E,, (t) = _ -2e-,d#

0

(3.31)

(3.32a)

(3.32b)
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In the precedingequations, En(t) are the exponential functions, and % and to) _

represent the optical coordinate and optical path, respectively. The quantities B1,x and

B2, _ represent the spectral surface radiosities, and for nonreflecting boundaries, Eq.(3.31)

is expressed in terms of the wave number as [35]

qR_ (rw) = eI_o -- e2_o

+2 Flw(t)E2(rw-t)dt- F2_(t)E2(t-T_)dt

Tw

(3.33)

where

Fl,_(t) = _(t)-_1_ ; F2_ (t) = _(t)-_2,_

Equation (3.33) is the general equation for one-dimensional absorbing-emitting

medium with diffuse non-reflecting boundaries. For nongray analyses, it is often con-

venient to replace the exponential integrals by appropriate exponential functions. Upon

employing the exponential kernal approximation

E2(t) = 3exp(-at) , El(t)= _exp(-3t)

Equation (3.33) is expressed in physical coordinates as

qn_ (y) = _1_,- _2,_
Y

[
o
L

[
Y

(3.34)

where z is a dummy variable for y. In obtaining Eq. (3.34) it has been assumed that

temperature differences in the medium are small and _,,, is independent of temperature.

This is consistent with the assumption of constant properties within the medium.
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As discussedin Chap. 2, the totalbandabsorptancecanbeexpressedas

A(y) = f [1-exp(-k_ou)]d,,,
0

-1
,-,o cm (3.35)

where both k_ and w have units of cm -1. Differentiation of Eq.(3.35) gives

A' (y) = f k_,exp(-k,_y)dw ,',-, cm -2

0

(3.36)

and

a" (y) = /-k2exp(-k_y)dw ,-,.,cm -3 (3.37)
o

Equations (3.35)-(3.37) are employed to express Eq.(3.34) in terms of the band absorp-

tance.

The total radiative flux is given by

qR(Y) = fqRw(y) dw

o

(3.38)

such that

dqR(y) /dqR_dc 0 d /dy _ dy - dy qn_dw (3.39)
0 0

Upon substituting Eq.(3.34) in Eq.(3.38) there is obtained for a multiband gaseous system

qR (Y) = el - e2 + "_

0

L

Y

It should be noted that the following relations have been used in obtaining Eq.(3.40)

(3.40)

f el_d_ = el ; f e2._dw-- e2
0 0
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Vx_(_) k_xp -5 _'(_ - z) az _ =
o

where n represents the number of bands in a multiband system.

By utilizing the definition of the band absorptance and its derivatives as given by

Eqs.(3.35)--(3.37) and evaluating the value of the Planck function at the center of each

band, Eq.(3.40) is expressed as

{] ]3 FI_,_ (z)A i (y- z) dz
qR(Y) = el -- e2 +

i=1
0

L

y

(3.41)

where Woi represents the center of the ith band.

Equation (3.41) is in proper form for obtaining the nongray solutions of molecular

species. However, in order to be able to use the band model correlations, this equation

must be transformed in terms of the correlation quantities defined in Chap. 2. The

following quantities, therefore, are needed for the transformation

u = py; uo = PL ; PS = k,,,dw (3.42)

Aw

Now, by using the definition A A= Woo'Eq.(3.36)-(3.37) are written as,

d 1 dA (y) A'(y) -1

,i.' (y) = _yy [._i(y)] - Ao dg Ao ... cm

A' (y) = Ao d_-(-y) - Ao [ d.4(u) du] ._,dg [ -du _y = PS(T) (u)

(1).,,,A" (y) = [PS(T)] 2

(3.43a)

(3.43b)

(3.43c)

The dimensions of both sides in Eq.(3.43b) and (3.43c) agree with the dimensions

given in Eqs.(3.36) and (3.37). By employing the definitions of Eqs.(3.42) and (3.43),
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Eq.(3.41)is expressedas

qR(u) = el -- e2-t- _ i=1
0

"°' }
lii

where u I is the dummy variable for u and jr (u) = Jr_. It should be noted that Fl_oi and

F2_ i in Eq.(3.44) represent the values of FI_ and F2_o at the center of the ith band, and

=(_)(_) = r___(_)L ao j

By defining the new independent variables as

U o :2 _ -- U o

Eq.(3.44) can be expressed as

where again fil (u)

Z

(3.45)
L

' li [' ]- e, + -_ _ Aoiuoi FI,,, (_') fi._ -_Uoi (_ - () d_'
i=1 k 0

1

denotes the derivative of A(u) with respect to u, and _ =

:
Equations (3.44) and (3.46) allow us to make use of the band model correlations for

the wide-band absorptance because these correlations are expressed in terms of u and/3.

However, it is often desirable and convenient to express the relations for qR and div qR

which only involve J (u) and ft.' (u) but not A" (u). This is accomplished by integrating

the integrals in the above equation by parts. This results in simpler integrals. Upon

performing the integration, Eq. (3.46) is expressed as

-23_A°i(i[de_(_r)]'i[i=I [ d_# J 3 ]qR(_) = el -- e2+ zuoi(_--_') d_'

1 3

-i[de_(_')]ji[-juoi(_r-_)]d_ r) (3.47)



By differentiating Eq. (3.47) using the Leibinitz formula, there is obtained

dqR(_)

d_ 3_-_Aoiuoi{f[ded(_')]ft_[3uoi(_-_')]d_'
2 i=1 o

23

(3.48)

Equations (3.47) and (3.48) are the most convenient equations to use when employing

the band-model correlations in radiative transfer analyses.

For the present physical problem, el = e2 and Flu i = F2_ i. Thus, for the case of

linearized radiation, a combination of Eqs.(3.10) and (3.46) results in [29]

0'- 2 (3_ 2- 2_ 3) + 1= _ _Hliuoi
i=1

0

1

(3.49)

n

where Hli = Aoi (T) (ae_._a'_ " HI = _ Hli
k dT I T1 _

i=1

A combination of F-xlS.(3.10) and (3.48) gives an alternate form of the energy equation

for the steady case as

0' - 2 (3_ 2 - 2_ 3) 'l- 1 = Hli

1

(3.50)
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Note that this equationcan alsobe obtaineddirectly by integratingthe left handside

of Eq. (3.49)by parts. Equations(3.49)and (3.50)providetwo forms of theenergy

equationfor the steady-stateconditions.

For thecaseof negligibleradiation,Eqs. (3.49)and(3.50) reduceto

o' = 2(3¢_- 2_3)- x (3.51)

The solution of Eq.(3.51) is found to be

0(_) = ¢(2d-d- 1) (3.52)

Thus, a combination of Eqs. (3.11) and (3.52) gives the result for the bulk temperature

for the steady case with no radiation as

17
at, = --- = -0.24286 (3.53)

70

This result is useful in determining the extent of radiative contributions.

3.3.1 Optically Thin Limit

In the optically thin limit [1], A(u) = u, fi](u) = 1, and fi," (u) = 0. In this limit,

therefore, Eqs.(3.49) and (3.50), reduce to

0'- 2(3e2-2¢3) + 1 = iAr 0((),_(- O(()d(
0

(3.54)

8' - 2(3_ _-2(3) + 1 = _N (_-() _7 d_'

where N = K1 = _ Si (T)
i=1 7"1

[de,,, "_ n

Hli = Aoi(Z) _ d---_JT1 ; HI = E nli
i=1

]/ (")+ ((- _) _ d(
¢

(3.55)
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The differentiation of Eqs.(3.54) and (3.55) yields the same energy equation for the

optically thin limit as

o" - aNO= 12(_- _2) (3.56)

The solution of Eq.(3.56) satisfying the boundary conditions 0(0) = 0 and 0(1) = 0 is

found to be

(,

Alternatively, the solution of Eq.(3.57) is written as

(3.57)

0(() =C, exp (v/-_() + C2exp (-v'_)

+ (m_"5)(24- 12m(+ 12m_ 2) ; m = 3N (3.58)

The constants C1 and C2 are obtained by using the boundary conditions 0(0) = 0 and

O' (1/2) = 0, and the solution for 0(_) is found to be

0(() = (_---_2) (1+:-4"_) (e-vr_e4_' + (3.59)

+ 24 - 12m( + 12m( 2

Equations (3.59) and (3.3.60) should produce identical results. The expression for the

bulk temperature, in this case, is obtained by combining Eqs.(3.11) and (3.59) as

- Ob _ 576 -- e -v_ 288 24 12
z + e-v_ m3 + m s 5mm2

[1 1Ob = _ NEXP - 21.6N 2 + 72N - 288

(3.60a)

(3.60b)

where

1 --e - "J_'_

NEXP- I+_-Z'_



3.3.2 Large Path Length Limit
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In the large path length limit, Uoi >> 1 for each band of interest and fi, (u) =

In (it) _t (/2) 1 and .4" a, = u, (u) = -_ [29]. Thus, in this limit Eqs. (3.49) and

(3.50) reduce to

1

f o(¢') de'0'- 2(3¢ 2- 2¢ 3) + 1 = M (¢_¢,)
0

(3.61)

0 t -- 2 (3¢ 2 --2¢ 3 ) -[- 1 ---- EHIi

i=1

o _7 In 7Uoi(¢--¢') de'

1 }+/(d-_O_l) ln[_uoi(¢'-¢)]d¢'

(

(3.62)

n

where M = --_ = (_) E Aoi (_'_)Tlae
i=l

Through integration by parts, it can be shown that Eq.(3.62) reduces to Eq.(3.61). The

non-dimensional parameter M constitutes the radiation-conduction interaction parameter

for the large path length limit. Equation (3.61) does not appear to possess a closed form

solution; a numerical solution, however, can be obtained easily.



Chapter 4

LAMINAR FLOW THROUGH CIRCULAR DUCT

This chapter covers the development of different types of formulation for steady

laminar fully developed flow of absorbing-emitting, constant property, incompressible

gas in a circular duct. Basic formulation for such a flow is given in Sec. 4.1. Gray gas

formulation is developed in Sec. 4.2 and nongray formulation is given in Sec. 4.3.

4.1 Basic Formulation

The physical model for the circular duct geometry is shown in (Fig.4.1). For radiation

participating medium, the equations expressing conservation of mass and momentum

remain unaltered, while conservation of energy for such a flow is given by the same

expression as Eq.(3.1), i.e.,

Under similar conditions as mentioned in Sec.

coordinates as

DP

div (kVT) + flT--_ + #_ - div qR (4.1)

3.1, Eq.(4.1) can be written in circular

OT _ 0 (rOT) 1 10
UOx - r Or \ -_r,] pepr0r (rqR) (4.2)

By noting that for a uniform wall heat flux and fully developed heat transfer

OT 2C_qw
(4.3)

Ox Umrok

and by employing the parabolic laminar velocity profile for u given by

(4.4)
u = 2urn 1- -_o

27
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Eq. (4.2) can be written as

r k 0 0

4 1- -_o -_o -- qwOr \ Or,/ qwOr(rqR) (4.5)

By noticing that for the case of a circular duct u = C2opr and uo = C2oPro, Eq. (4.5)

is expressed as

= Zco P--°
4 1- _Lo -_o qw Ou\ -_u/

Defining non-dimensional quantities

r u

ro Uo

T- To, kC2o P

qwro/k Uoqw

Eq.(4.6) can be rewritten as

1 0

qw Ou (uqR) (4.6)

(T - Tw) (4.7)

o ( oo)lO

The boundary conditions for this case are given as

(_qR) (4.8)

0' (0) = o

0(1) = 0 (4.9)

Integrating Eq.(4.8) once and by noting that at _ = 0, (00/0_) = 0 and qR = O,

we get

0_ + _3 - 2_ - qR(_)
qw

For the circular geometry, the bulk temperature is defined as
27¢ ro

Ob- Um7rr2° u(r)O(r)rdrdO
0 0

A combination of Eqs. (4.4) and (4.1 l a) results in
1

0 b = 4f (¢-¢3)o(¢)ae
0

The Nusselt number based on the hydraulic diameter Dh = 2ro is given as

2roqw 2

Nu -- k (T - Tb ) = --'_b

(4.10)

(4.11)

(4.12)

(4.13)
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4.2 Gray Gas Formulation

For a gray non-scattering medium within a black bounding surface, the equation for

radiative flux can be written using the exponential approximation as [29]

]92d-'_ r-_r (rqR) -- _pqR

dT 4

= 3a_p dr (4.14)

For linearized radiation Eq.(4.13) can be written in dimensionless form as

d[ld ]9 2 dOd--'_ -_-_ ( ( q R ) -- _ r o qR = 7 2qw -_
(4.15)

where

')'2 --

9 3 2l__rxpT_r o 12aT3wr2o

k ktcp

Boundary conditions for Eq.(4.14) are

To = _pro (4.16)

At 3 1 ]E= 1,-_qR = -- "r'_o

qR (0) = 0 (4.17)

Equation (4.8) can be integrated once to give

d...O0=__qR (_) + 2E_E3_ c___j.1
dE qw E

Equation (4.14) and (4.16) are combined to give

where

E2d2qR F dqR (M2E 2 + 1)
-g_- +" dE - qR = 72qw (2E 3 -- Es -- C1E)

M22=9 2iro +3'2

The solution of Eq.(4.18) is found to be

72q..._____(M22E3 + 8E - 2M2E)
qR = C211 (AI2E) + C3K1 (M2E) q- 3//4

For a finite solution as E --> O, C3 must be taken to be zero and

"r_q__v__(M_E3+ sE- 2M_E)
qR = C211 (MeE) + M_

(4.18)

(4.19)

(4.20)

(4.21)



From Eqs.(4.16)and (4.20), thereis obtained
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or

-Y2qw(s- M_)
02171 (_172) +

= -'_ro C2 I1 (M2) + Ii (M2() +_=1

(4.22)

72qw (247"o - 3roM_)3_-oC__rl(M_)+

= -2C_ [a (i_) + (M_o(M_)

72qw [3TOM 2 _ 24ro - 32]
C213roll (M2) + 2M2Io(M2)l - M_

and

[ 3toM 2 - 247"0 - 32 1 (72qw_

From Eq.(4.2.17) and (4.2.20) one finds

dO C2II(M2_) + 7__L2(M_(3+8(_2M_()+2(_(a_C__L
d--_ qw M_

where from the boundary condition O' (0) = O, C1 = 0

Equation (4.24) is integrated once to give

m --+4_2-M22_ 2) +_2-1_ 4-C4

From the boundary condition 0(1) = 0, one finds

C2 to(M2)+ 72 (16-?M_
C4 - qwM2 "_2 \ -= /

Consequently, Eq.(4.25) becomes

o - c2 [L(M2_)- L(M2)I
qwM2

+"----"4M_72(M22_4+16_2_4M{_2+aM 2_16)+_2_ _4-4 --43

(4.24)

(4.25)

(4.26)

(4.27)



The expression for the bulk temperature can be easily obtained as

M_; _7 J
11 72 8 72 11

24M_ 3M_ 24

where

C - M_ L2M_-Lo(--M_+ 3roI,(M2)J

M_ = _¢ + 72
3 2 12aT_r °12a_pT_r ° 3 2

72 --
k ktZp

T o : Kpr o

4.2.1 Optically Thin Limit
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(4.28)

Recall the definition of M2 as

M_ = 9% 2 + 72

For optically thin conditions r o --> 0 and, therefore,

i

limro->0(M_)=72 , limro- >0(M2)=7_

lim "ro- > 0 (C) =
32 16

2v_TZo(v_7) v_Xo(v_7)
The expression for the bulk temperature in the optically thin limit, therefore, becomes

: ± [25611(_) __._8+16_- (4.29)

By employing the series expansion of the modified Bessel functions for small values of

the argument 72, Eq. (4.29) can be written in an alternate form, and by letting 72- > 0

in that form there is obtained the result in the transparent limit (Oh)thin 11



4.2.2 Optically Thick Limit

33

The asymptotic series for modified Bessel's functions for large value of M2 are

Io(M2) "_ _ 1 + _ + 128M_ + "'" (4.30a)

eM2 [ 3 15 ]I1 (M2) _ _ 1 83//2 128M_ + "'" (4.30b)

Substituting for Io(M2) and I1(M2) from Eq. (4.30) into Eq. (4.27) and taking the limit

as ro --> a, we get

11 72 8 '72 11 (4.31)
(Ob)thick -- 24 M 2 3 M24 24

Eq.

Defining

N - kKp

4a Taw

(4.31) is expressed in an alternate form as

1111(0b),h ck= 1+
(4.32)

Equation (4.32) also reduces to the correct form for the case of no radiative interaction.

4.3 Nongray Formulation

In this section, formulation of the problem under realistic conditions is presented.

Under such conditions the gas is nongray, that is the band parameters are functions of

the wavelength. For solution of Eq.(4.10), an appropriate equation for radiative flux is

needed. For a circular geometry, the expression for the radiative heat flux in terms of



non-dimensionalpath length is givenas [39]
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In orderto combineEq.(4.10)and(4.34),thePlanck'sfunctionis linearizedas,

1 [e,_(()-e,.,c(Tw)]
B,.,_(_)- B,.,c(T,,,) = -_

dO (3 4aro {de._c'_
d--_+ - 2_ = rr---'_--uo\ dT ]

/
( sin 7

-_\dT]_

Now, a combination of Eqs.(4.10), (4.34) and (4.35) yields

_r

-'r ]o (_') A, t_os_ (_ - _') e_'

(4.35)
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1

- O(_')A, Lc°s3 '(_'-_) d_'

+ 0(_')Ai i.cosT(_+ -2(sinT) d('
( sin _,

d7 (4.36)

For nongray gases with n-bands, Eq.(4.36) is written in the following form,

7r

{
sin 3'

1

+ / O({')fi.i' _({+ -2_sinT) d{'

sin 3'

(4.37)

where
I

Hi = aoi ( d-_ ) fl'i = _o,To'

Combined solutions of Eqs. (4.37) and (4.11) are obtained by numerical procedures.

4.3.1 Large Path Length Limit

As noted earlier, in the large path length limit Uoi >> 1 for each band of interest, and

fi-'i (ui) = 1/ui. In this limit, Eq. (4.37) reduces to

_-']Zi cos7 O (¢') (¢ ,)
7rbk i=1 0 _ sin 3'

- 2( sin 7)
( sin 3'

d7 (4.38)
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or

-_ + _2 - 2 = _8ar°H/{c°s'_(17rbk - sinT)
0

1

/ O((')((__,)((+(,_2_sinT)

( sin 7

d7 (4.39)

The solution of Eq.(4.38) or (4.39) can be obtained either numerically or in closed form.



Chapter 5

METHOD OF SOLUTION

The solution procedure for both cases, the parallel plate geometry and the circular

duct, are presented in this chapter. In principle, the same numerical procedure applies to

both the general and large path length limit cases for both geometries.

5.1 Parallel Plates

The general solution of Eq.(3.49) is obtained numerically by employing the method

of variation of parameters. For this, a polynomial form for 0(_) is assumed in powers

of _ as

m=0

(5.1)

By considering a five term series solution (a quartic solution in () and satisfying the

boundary conditions 0 (0) = 0' (1/2) = 0 and 0' (0) = -0' (1), one obtains

and

0(_) = a 1 (_-- 2_ 3 nt- _4) at- a2 (_2 _ 2_3 -J¢-_4)

0'(_) = al (1--6_ 2+4_ 3) +a2(2_--6_ 2+4_ 3)

A substitution of Eq.(5.3) in Eq.(3.49) results in

(21 (1 -- 6_ 2 nt- 4_ 3) + a2 (2_ -- 6_ 2 + 4_ 3) -- 2 (3_ 2 -- 2_ 3) + 1

3 _ HliUoi

: 2 i=1

{/ [3 1o A,  uo, - d¢'
0

(5.2)

(5.3)
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1

/ f3 1}- 0 (_') A i -_Uoi (_'- _) d(' (5.4)

where expressions for 0 ((') are obtained from Eq.(5.2)

The two unknown constants al and a2 in Eq.(5.4) are evaluated by satisfying the

integral equation at two convenient locations (_ = 0 and ( = 1/4 in the present case).

The entire procedure for obtaining al and a2 is described in [351. With known values of

al and a2, Eq.(5.2) provides the general solution for 0((). The expression for the bulk

temperature is obtained by combining Eqs.(3.11) and (5.2) as

17al + 3a2
0b - (5.5)

70

The governing equation for the large path length limit is Eq.(3.61). For this equation

also the solution is given by Eqs.(5.2) and (5.5) but the values of a's are different in

this case [35].

5.2 Circular Duct

The general solution of Eq.(4.32) is obtained numerically by employing the method

of variation of parameter similar to that discussed in Sec. 5.1. For this, a polynomial

form for 0(_) is assumed in powers of ( as given by Eq. (5.1). By considering a

five term series solution (a quartic solution in () and satisfying the boundary conditions

0 (1) = 0, 0_(0) = 0 and 0 (1) = 0 (-1), one obtains

0(_) = a, (_2_ 1) + a2 (_4_ 1) (5.6)

and

0' (_) = 2a1_ + 4a2_ 3 (5.7)
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A substitutionof Eqs.(5.6)and(5.7) in Eq.(4.32)resultsin

rr

4ro .uO:o(_3 (4a2 + 1) + 2((al -- 1) -----"_" i=1

i
sin

1

f ]- o(_')_,' _ (_'- _) d_'

1 }f < ]+ 0(_')Ai c-_s7 (_ + -2(sinT) d('

( sin 3'

d(%8)

where expression for 0((') are obtained from Eq.(5.7).

The two unknown constants al and a2 in Eq.(5.8) are obtained by satisfying the

integral equation at any two locations of _. The entire procedure is described in Appendix

A and relations for the constants are expressed as

a 1 = ((ZZlO_4) -- (ZZ2012))/DEN (5.9)

a 2 -- ((zz2oq) -- (ZZlO_3))/DEN (5.10)

DEN = (O_lOt 4 - 0_2ol3) (5.11)

The quantity appearing in Eqs.(5.9)-(5.11) are defined in Appendix A.

Now, with known values of al and a2, Eq.(5.6) provides the general solution for 0(_).

The expression for the bulk temperature is obtained by combining Eq.(4.11) and (5.6) as

2 5

0b = -]al - _a2 (5.12)
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Thegoverningequationfor thelargepathlengthlimit is Eq.(4.34).For thisequation

alsothesolutionis givenby Eq.(5.6)butthevaluesof al and a2 are different. In large path

length limit, the integrals can be evaluated in close forms. Procedure is described briefly

Equation (4.34) is expressed in an alternate form as

r

d_ + - 2¢= M cos-_ o(() (_ ,) +
0 _ sin 3'

d_' ] d7(_ + _' - 2_ sin 7)

where

/'l 11

M = _ _ Hi _ _ HiAt _ = 1/2, Eq. (5.13) becomes-_" 5xk
i=t i=l

1 7 / 1 1
.,+_._-_=M cos_ e(_') -_' + ½+_'-_in_

d_' d7

0 ½sin 7

(5.13)

(5.14)

Substituting for 0(_') in terms of al and a2 as given by Eq. (5.6), and rearranging

Eq.(5.14), one obtains

{ i /
2 1

7
--=al -I+M cos78

0 _ sin 3'

{2 / / ["'+a2 - +M cos7 _,
0 _sin-r 21+ - sin7

By evaluating the inner integral Eq.(5.15) is expressed as

tr

--- =al --1 + M cos7 sin27 - sin7 - ln(3 - 2sinT)
8

0

-( sin27-sinT) ln(1-sinT)-_sin27+_sin'7-1 d 7

/ I( )3 1 15

+ a2 - + M cos 7 sin4 7 - 2 sin 3 3' + _ sin 2 3' - _ sin 7 -
0

ln(3-2sinT)- sin47-2sin37+_sin27-_sin7 ln(1-sinT)

717 11 23 23)

- 1-"2+ 2-4 sin 3' - _ sin 27 + "_ sin33' - _ sin 43'J/d7 (5.16)

/ 21/1}-_-f d¢'d-_

- f d_'d7 (5.15)



Now solvingthesetrigonometricintegralsandsimplifying,oneobtains

--8 = al oAlog

{ 1 [(-_Alog207 121 13) (1+a_ - +M (3)-40---6+T5 + £5

41

1)- 123]_5"17)360j

Equation (5.2.17) can now be written as

7
_-- = alo q q-a2a 2

8

where

[_° ]a,= -I+M , _Alog(3)

[ _0_ ]a2 = -.5 + M 19 Alog (3)
4s _

At _ = 1, a similar solution procedure yields the result

(5.18)

--1 ---- aloe3 q- a2a4 (5.19)

where

aa=-2+M[-2Alog(2)- 2] (5.20)

[_o_ _1a4 = -4+M

Now, with known values of al and a2, E,q. (5.6) provides the general solution for

0(O and the bulk temperature is given by Eq. (5.12).



Chapter 6

RESULTS AND DISCUSSION

Extensive results have been obtained for variation of temperature (0) and bulk

temperature (0b) at different conditions for all four species in both the cases, and most

of these are available in Appendix B and C. The computer programs used for numerical

solution for both geometries are provided in Appendix D and E. Selected results are

presented here to compare and illustrate the variation of temperature 0 with _ and of

bulk temperature 0b with plate spacing L or duct radius ro. Variation of bulk temperature

with pressure is also presented to illustrate the effect of large pressure path length and

it's approach to limit of large Uoi much more clearly.

Although the results are similar in nature for both the geometries, they are presented

in seperate sections for clarity.

6.1 Parallel Plates

The results for temperature variations across the duct are presented in Figs. 6.1-6.4.

Figure 6.1 shows temperature profile for H20 at Tw = 500 K, P = 1 atm and L = 10 cm

with general as well as in the limit of large Uoi. This demonstrates that the limit of large

Uoi overestimates the radiative energy transfer giving a conservative approximation. Thus,

for practical and realistic problems, it might be easier to find out the extent of radiative

interaction using the limit of large Uoi formulation and then use the general formulation

which is computational!y complex and expensive. Figure 6.2 demonstrates the effect

of higher wall temperatures on temperature profiles. As the wall temperature increases

temperature profile becomes less and less parabolic. In other words, temperature gets

distributed more and more evenly across the duct. The effect of increasing pressure at any

42
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temperature shows a similar trend (Fig. 6.3). At high pressures, the results approach the

limit of large uoi. The comparison of temperature profiles for the four species presented

in Fig. 6.4 demonstrates the relative importance of each species in energy transfer. Water

vapor (H20) is the most radiation participating species among the four considered here.

For the physical conditions of Fig. 6.4, OH is the least radiation participating species.

The bulk temperature results as a function of the distance between the plates are

presented in Figs. 6.5-6.9. The limiting value of 0b = --0.243 corresponds to negligible

radiation. For a particular plate spacing L, the large path length results represent the

limiting solutions for high pressures. The results, in general, demonstrate that the effect

of radiation increases with increasing plate spacing.

General as well as limit of large uoi solutions for the bulk temperature are illustrated

in Figs. 6.5-6.7 for H20. The results for H20 at Tw = 1000 K are presented for P = 1,

2, 5, 10 atm. It is noted that as pressure increases the ability of gas to transfer radiative

energy increases, approaching the correct limiting solution of large uoi. The results shown

in Fig. 6.6 for H20, demonstrate the effect of increasing wall temperature. It is obvious

that the radiative transfer is more pronounced at the higher wall temperature. The results

presented in Fig. 6.7 illustrate both effects.

Comparison of bulk temperature results with plate spacing for various species is

presented in Figs. 6.8 and 6.9 for a pressure of one atmosphere. The results clearly

demonstrate the relative ability of the four species for radiative transfer at different path

lengths. For lower plate spacings and relatively higher temperatures, however, CO2

shows a significantly higher ability than other species. This is a typical distinguishing

feature of the CO2 under optically thin conditions[29].

The trend of the general solution approaching the limit of large Uoi (large path length

limit) is illustrated in Fig. 6.10. A comparison of results for various species is shown

in Fig. 6.11.
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6.2 Circular Duct

All results for circular duct are presented in Figs. 6.12-6.22. The results are for the

same species at the same conditions as for the parallel plate geometry. The results, in

general, exhibit the same trend as presented in Figs. 6.1-6.12 for the parallel plate

geometry. However, the extent of radiative interactions is entirely different. This

is because the circular geometry provides additional degrees of freedom for radiative

interactions[39]. Other basic differences are noted below.

Results of temperature variations across the duct are plotted from _ = -1.0 to 1.0,

because of the difference in the location of the coordinate axes as shown in Fig. 3,.1. The

limiting value of 0b = --0.4583 corresponds to the case of negligible radiation. Another

important point to note is that the general solution approaches the limit of large uoi at

lower path lengths than for the parallel plate geometry. Extensive results for circular

duct for all species were obtained. Some of these results are included in Appendix C.
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Chapter 7

SUMMARY AND CONCLUSIONS

A brief review is presented on various band models and band model correlatiov_s

that are useful in nongray radiative transfer analyses. Different formulations for one-

dimensional radiative flux are provided. These are used to develop the basic governing

equations for energy transfer in gaseous systems.

Analytical formulations and numerical procedures have been developed to investigate

the radiative interaction of absorbing-emitting species in laminar fully developed flows

between parallel plates and through a circular duct. Extensive results have been obtained

for OH, CO, CO2, and H20 for different physical conditions. Illustrative results for the

temperature distribution and bulk temperature are presented for different pressures and

wall temperatures. The general nongray results for the circular duct have been obtained

for the first time. In these results, a lower value of temperature implies a higher ability

of the gas to transfer radiative energy.

The gray and nongray formulations for circular duct has been derived in local

thermodynamic equilibrium. This formulation involves four integrals of which two are

angular, one is spatial, and one is spectral. One angular integral is taken care of by using

exponential kernal approximation [27, 32, 37]. Furthermore, the spectral integration fo?

nongray formulation is represented by using a total band absorptance. The remaining two

integrals, one angular and one spatial, are computed numerically by multidimensional

quadrature method using Gauss-Kronrod rule [41]. The resulting equations are either

integral or integro-differential and cannot be solved analytically. They are therefore

solved numerically using the method of variation of parameter [1, 35].

67



6,_

The results, in general, demonstrate that the effect of radiation increases with

increasing plate spacing/radius, and the radiative transfer is more pronounced at higher

wall temperature and pressure. One important fact is that, for all species, the general

solution approaches the correct limiting solution for large Uoi. Of all the species, H20 is

a highly radiation participating species (as compared to CO2, CO and OH). The extent

of radiative interactions is higher in circular duct, because it provides additional degrees

of freedom.

The present study provides different kinds of limiting solutions for both the geonle-

tries. These limiting solutions are in closed form and therefore computationally less

expensive to obtain. In many practical and realistic problems the limiting solutions are

very useful to demonstrate the importance of radiative interaction. Finally it is important

to note that any kind of extensive radiation model (line-by-line or narrow band model)

can be easily used in the nongray formulation provided in this study.
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APPENDIX A

DERIVATION OF CONSTANTS FOR CIRCULAR DUCT

To determine constants in Eq.(5.6), Eq.(5.8) is evaluated at any two convinient

locations. To avoid excessive writing, the following notations are used

hi = hUoi

1 1

bi buot

where

b= 5-
4

Rewriting governing Equation for circular duct using the quantities defined in (A. I)

/
_sin "r

I

1

+/
_sin7

o (_')A, (_- _') ,_'

1o(_').4, _ (_' - _) e_'

O(_')A, (_+ -2_sinT) d_' d7

Assuming solution of the form (A quartic solution in _)

(A.1)

(A.2)

0(_) = A1(_2- 1) +A2(_4- 1)

0' (_)= 2,4_ + 4A2_ 3 (A.3)
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By defining u = _..X_cos._('_ - (') for the first and the fourth integrals, tL = t,,cos._((' - _)

for the second and the fifth integrals, and _t = _ (,_ + _ - 2,_ sinT) for the third and
cos "t

the sixth integrals in Eq.(A.4) and changing the limits respectively. And substituting for

O (_) from (A.3)into Eq.(A.2) and rearranging, equation in terms of changed variables is

obtained. The integrals with the changed variables are solved individually and then added

up as defined in Eqs. (5.9) and (5.10). The procedure adopted to evaluate constants at

and a2 is similar to one applied in Ref. 39.
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APPENDIX B

ADDITIONAL RESULTSFOR LAMINAR FLOW OF NONGRAY

GAS THROUGH PARALLEL PLATE PLATE GEOMETRY

Extensive results obtained for laminar flow of nongray gas between two parallel

black plates are presented here for reference purposes. The results are for species CO,

OH, CO2. Results for temprature variations across the duct as well as variation of bulk

temprature with plate spacing and pressure are presented. All the results show similar

trend as discussed for Figs. 6.1---6.12.
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APPENDIX C

ADDITIONAL RESULTS FOR LAMINAR FLOW

OF NONGRAY GAS TttROUGH CIRCULAR DUCT

Extensive results obtained for laminar flow of nongray gas black circular duct are

presented here for reference purposes. The results are for species CO, OH, CO2. Results

for temprature variations across the duct as well as variation of bulk temprature with

plate spacing and pressure are presented. All the results show similar trend as discussed

for Figs. 6.13--6.22.
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APPENDIX D

PROGRAM LISTING FOR LAMINAR FLOW OF

NONGRAY GAS THROUGH PARALLEL PLATE DUCT

The listing of the FORTRAN program used for numerical procedure is given here.

The program is coded on UNIX based SUN 386i. Input file consists of all the band

parameters for different species[29]. The program uses romberg cautious integration

routine for numerical integration purposes. The listing of rornberg integration is not

given here, but is available in IMSL libraries.

program PLATE

C ...... kfb Thermal Conductivity of any Gas

real l,kfb

C ...... n No. of Bands

C

C ...... eps (2)

eps (i)

for the Gas

parameter (n=2)

external fpk0, fpkl,fpk2, fpk3, fpk4

dimension fi(n),bi(n),hi(n),eps(3)

common /func/f, b

open (5, file=' INPUT' )

rewind (5)

open (6, file=' OUTPUT' )

rewind (6)

eps(1) Absolute Error Desired

Relative Error Desired

= 1.0e-6
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eps(2) = l.Oe-6

do 333 i = 1,656

read (5,*)t,pr,1, (fi(k),k=l,n), (bi(k),k=l,n),

+ (hi (k) ,k=l,n), kfb

am = i/kfb

hsum = 0.0

suml = 0.0

sum2 = 0.0

sum3 = 0.0

sum4 = 0.0

do iii k = l,n

f = fi (k)

b = bi (k)

h = hi (k)

hsum= hsum+h

cu = i./b

CUS = CU*CU

CUC = CU*CUS

cuq = CU*CUC

X=0.0

C ...... Numerical Integration

C ...... Cautious Romberg Integration

call cadre(x,b, fpkl,eps, 0,rrl,irl)

call cadre(x,b, fpk2,eps, 0,rr2, ir2)

call cadre(x,b, fpk3, eps, 0,rr3,ir3)

call cadre(x,b, fpk4,eps, 0,rr4,ir4)

suml = suml+(h* ((cu*rrl)-(2.*cuc*rr3)+(cuq*rr4)))
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IIi

sum2

P

q

call

call

call

call

call

call

call

brkl

brk2 =

brk3 =

brk4

brk5

sum3

brsl

brs2 =

brs3 =

= sum2+ (h* ((cus*rr2) - (2. *cuc*rr3) + (cuq*rr4)) )

= b/4.

= (3./4.)*b

cadre (p, q, fpkO, eps, O, ssl, isl)

cadre (x,p, fpkl, eps, O, ss2, is2)

cadre(x,q, fpkl,eps,O,ss3, is3)

cadre (p, q, fpk2, eps, O, ss4, is4)

cadre (x, p, fpk3, eps, O, ss5, is5)

cadre (p, q, fpk3, eps, O, ss6, is6)

cadre (p, q, fpk4, eps, O, ss7, is7)

= (57./256.)*ssi

(ii./16.)*cu* (ss2+ss3)

(9./8.) *cus*ss4

= cuc* (ss5+ss6)

= cuq*ss7

= sum3+ (h* (brkl+brk2-brk3-brk4+brk5))

= (9./256.)*ssi

(3./16.)*cu*(ss2+ss3)

(i./8.) *cus*ss4

brs5 = cuq*ss7

sum4 = sum4+(h*(brsl+brs2-brs3-brs4+brs5))

continue

alphal =

alpha2 =

alpha3 =

alpha4 =

constt =

1. O+ (am*suml)

am*sum2

(Ii./16. ) + (am*sum3)

(3./16. ) + (am*sum4)

16. * ((alphal*alpha4) - (alpha2*alpha3))
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333

constl =

const2 =

al =

a2

bulk

(Ii. *alpha2) - (16. *alpha4)

(16. *alpha3) - (Ii. *alphal)

constl/constt

= const2/constt

= -((17.*al)+(3.*a2))/70.

call Ipl(am, hsum, conl,con2,bulkl)

write(6,*)t,pr, l,bulk,bulkl

else

continue

endif

continue

end

function fpkO(u)

common /func/f,b

den = (f*((u*u)+(2.*u)+2.)+u)* (u+(2.*f))

aud = (f*((u*u)+(4.*u*f)+(4.*f)))/den

fpkO= aud

return

end

function fpkl(u)

common /func/f,b

den = (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

aud = (f*((u*u)+(4.*u*f)+(4.*f)))/den

fpkl= u*aud

return

end

function fpk2(u)
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common

den =

aud =

/func/f,b

(f* ((u*u)+(2.*u)+2.)+u)* (u+(2.*f))

(f*((u*u)+(4.*u*f)+(4.*f)))/den

fpk2= u*u*aud

return

end

function fpk3(u)

common /func/f, b

den = (f*((u*u)+(2.*u)+2.)+u)*(u+(2.*f))

aud = (f* ((u*u)+(4.*u*f)+(4.*f))) /den

fpk3= u*u*u*aud

return

end

function fpk4(u)

common /func/f, b

den = (f* ((u*u)+(2.*u)+2.)+u)* (u+(2.*f))

aud = (f*((u*u)+(4.*u*f)+(4.*f)))/den

fpk4= u*u*u*u*aud

return

end

subroutine ipl (am, ht,conl,con2,bulkl)

em = am*ht

etal = i.+((7./12.)*em)

eta2 = (l./12.)*em

eta3 = (ii./16.)+(0.583154559"em)

eta4 = (3./16.)+(0.127164755"em)

phic = 16.*((etal*eta4)-(eta2*eta3))
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phil = (ll.*eta2)-(16.*eta4)

phi2 = (16.*eta3)-(ll.*etal)

conl = phil/phic

con2 = phi2/phic

bulkl= -((17.*conl)+(3.*con2))/70.

return

end
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APPENDIX E

PROGRAM LISTING FOR LAMINAR FLOW OF

NONGRAY GAS THROUGH CIRCULAR DUCT

The listing of the FORTRAN program used for numerical procedure is given here.

The program is coded on UNIX based SUN 386i. Input file consists of all the band param-

eters for different species[29]. The program uses Multidimensional quadrature integration

routine using Gauss-Kronrod rule (TWODQ), for numerical integration purposes. The

subroutine is available in 1MSL library (Chap. 4, Vol. 2.),

program TUBE

real kfb

C...... kfb Thermal Conductivity of the Gas

parameter (n=l,pi=3.1415926535898)

C...... n No. of Bands in any Gas

external frll,fr12,fr21,fr22, fr31, fr32

external o,q,r,s

dimension fi (n) ,bi (n) ,hi (n) ,zi (2)

dimension zz(2),gamal(2),gama2(2)

common /func/f,b,z

C...... INPUT Input Data File with All Properties

C the Gas under consideration.

open (5, file=' INPUT' )

rewind (5)

open (6, file=' OUTPUT' )

for
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rewind (6)

C ea Absolute Error Desired

C ...... er Relative Error Desired

ea = 1.0e-4

er = 1.0e-4

C ...... x Lower Limit of Integration for Outer Integral

C ...... y Upper Limit of Integration for Outer Integral

x= 0.0

y = (pi/2.0)

C ...... zi(1) & zi(2) Two Values of xi.

zi (i) = 0.5

zi (2) = 1.0

do 333 i = l, imax

read (5,*)t,p,l, (fi(k),k=l,n), (bi(k),k=l,n),

+ (hi (k), k=l,n), kfb

am = (3.2*l)/(pi*kfb)

do 222 k = 1,2

z = zi (k)

xz = 2.*z

yz = 4.* (z**3.)

zz (k) = (z**3.) - (2. *z)

brkl = 0.0

brk2 = 0.0

hsum = 0.0

do iii j = l,n

f = fi (j)

b = bi (j)
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h = hi (j)

hsum= hsum+h

C ...... Numerical Integration

C ...... Multidimensional Quadrature Technique using

C ...... Gauss-Kronrod rule.

call twodq (frll, x, y, o, q, ea, er, l,rrll,erll)

call twodq (frl2, x, y, o, q, ea, er, l,rrl2,erl2)

call twodq (fr21, x, y, o, r, ea, er, l,rr21,er21)

call twodq (fr22, x, y, o, r, ea, er, l, rr22,er22)

call twodq (fr31, x, y, q, s, ea, er, l,rr31,er31)

call twodq (fr32, x, y, q, s, ea, er, l,rr32,er32)

brkl = brkl+(h* (rrll-rr21+rr31))

brk2 = brk2+(h* (rr12-rr22+rr32))

III continue

gamal(k)

gama2(k)

continue

alphl =

alph2 =

alphc =

al

a2

em

222

= (am*brkl)-xz

= (am*brk2)-yz

call

bulk =

bulkl =

write(6,

( (zz (i) *gama2 (2)) - (zz (2) *gama2 (I)) )

( (zz (2) *gamal (I)) - (zz (I) *gamal (2)) )

( (gamal (I) *gama2 (2)) - (gama2 (i) *gamal (2)) )

= alphl/alphc

= alph2/alphc

= hsum*am

Ipl (era,conl, con2, bulkl)

- ( ( (-2./3. ) *al) + ( (-5./6. ) *a2) )

- ( ( (-2./3. ) *conl) + ( (-5./6. ) *con2) )

*) t, p, r, bulk, bulkl
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ii

333

common

den =

aud =

frll=

return

end

if (r.eq. 5. O) then

do ii ii = I, ii

xi = O.l*float (ii-l)

theta = -(al*((xi**2.)-l.)+a2*((xi**4.)-l.))

thetal= -(conl* ((xi**2.)-l.)+con2* ((xi**4.)-l.))

write (6, *) t, p, xi, theta, thetal

continue

else

continue

endif

continue

end

function frll(x,u)

/func/f, b, z

(f* ((u'u) + (2.*u) +2.) +u) * (u+ (2.*f))

(f* ((u'u) + (4. *u'f) + (4. *f) ) ) /den

( (z- (cos (x) *u/b) ) *'2.-I. ) *cos (x) *aud

function frl2 (x,u)

common

den =

aud =

frl2=

return

end

function

/func/f, b, z

(f* ((u'u) + (2.*u) +2. ) +u) * (u+ (2. *f) )

(f* ((u'u) + (4. *u'f) + (4. *f) ) )/den

( (z- (cos (x) *u/b) ) *'4.-I .) *cos (x) *aud

fr21 (x, u)
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common

den =

aud =

fr21=

return

end

function

common

den =

aud =

fr22=

return

end

/func/f,b,z

(f* ((u,u) + (2. *u) +2. )+u) * (u+ (2. *f) )

(f* ((u'u) + (4. *u'f) + (4. *f) ) )/den

( (z+ (cos (x) *u/b) ) *'2.-i .) *cos (x) *aud

fr22 (x, u)

/func/f,b, z

(f* ((u*u)+(2.*u)+2.)+u)* (u+(2.*f))

(f* ((u'u) + (4 .*u'f) + (4. *f) ) )/den

( (z+ (cos (x) *u/b) ) *'4.-I. ) *cos (x) *aud

function fr31 (x,u)

common

den =

aud =

fr31=

return

end

function

common

den =

aud =

fr32=

return

end

/func/f,b,z

(f* ((u'u) + (2.*u) +2. )+u) * (u+ (2. *f) )

(f* ((u*u)+(4.*u*f)+(4.*f))) /den

((z* (2. *sin(x)-l.)+(cos(x)*u/b))**2.-l.)*cos(x)*aud

fr32 (x, u)

/func/f, b, z

(f* ((u'u) + (2 .*u) +2 .) +u) * (u+ (2. *f) )

(f* ((u'u) + (4. *u'f) + (4. *f) ) )/den

((z* (2 .*sin (x) -l .)+ (cos (x) *u/b) ) **4 .-l .) *cos (x)*aud
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function o(x)

common /func/f,b,z

o = 0.0

return

end

function q(x)

common /func/f,b,z

q = b'z* (I .-sin (x))/cos (x)

return

end

function r(x)

common /func/f,b,z

r = b* (I .-z)/cos (x)

return

end

function s(x)

common /func/f,b,z

s = b* (l.+z-(2.*z*sin(x)))/cos (x)

return

end
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